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O
wing to their unique electrical
properties, carbon nanotubes (CNTs)
have attracted a great deal of inter-

est for their potential in next-generation
nanoelectronics.1,2 While individual CNTs
can exhibit favorable electronic properties,
it is often the CNT/metal contacts that gov-
ern the behavior and performance of CNT
devices.3,4 Thus, it is important to develop a
fundamental understanding of contacts to
CNTs in order to fully realize the potential of
CNT devices. While work on CNT/metal con-
tacts has addressed the issues of band align-
ment,5�8 charge injection,9�11 and structural
properties,12�14 many questions still remain.
Recent experimental work15,16 has provided
new insight by demonstrating that the
nanotube/palladium (Pd) contact resistance
depends on the contact length, and that
appropriate control of the contacts allows
for the realization of high-performance
short-channel CNT field-effect transistors
(FETs) with subthreshold swings that sur-
pass those expected from conventional
scaling theory. This last result is particularly
important not only for technology, but also
because it suggests that new paradigms
govern the properties of these nanoscale
transistors. For example, it has been sug-
gested that modulation of the contacts by
the gate, a phenomenon not usually ob-
served in conventional transistors, could
lead to such behavior.16 The gate modula-
tion of contacts to graphene nanoribbons
has also been studied recently.17

In this paper, we use numerical simula-
tions to study these recent experimental
measurements and explicitly demonstrate
that the superior scaling behavior is due to a
strong modulation of the contacts by the
gate. This results not only in modulation of
the band alignment at the contact, but also

leads to a novel phenomenon where the
subthreshold swing is dominated by gate
control of the near-contact region in the
channel. This gives rise to subthreshold
swings for short-channel devices that are
belowwhat is predicted by standard theory,
allowing for improved performance. In ad-
dition, we show that field enhancement at
the dielectric/CNT interface plays an impor-
tant role in augmenting the impact of the
gate on the contacts.
The CNT FET to be simulated is shown in

Figure 1. For this work, we consider a (16,0)
nanotube with a diameter (dCNT) of 1.2 nm,
which matches the average size of the CNTs
in ref 15. The dielectric is HfO2, the oxide
thickness (tox) is 10 nm, the height of the
source/drain contacts (tc) is 20 nm, the CNT
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ABSTRACT

We use numerical simulations to analyze recent experimental measurements of short-channel

carbon nanotube field-effect transistors with palladium contacts. We show that the gate

strongly modulates the contact properties, an effect that is distinct from that observed in

Schottky barrier carbon nanotube transistors. This modulation of the contacts by the gate

allows for the realization of superior subthreshold swings for short channels, and improved

scaling behavior. These results further elucidate the behavior of carbon nanotube�metal

contacts, and should be useful in the optimization of high-performance carbon nanotube

electronics.
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is separated from the oxide or themetal by 0.3 nm, and
there are 100 nm of vacuum above the source/drain
contacts (tvac). We use a dielectric constant of 20 for the
HfO2 layer, yielding an equivalent oxide thickness of
2 nm. The channel length (Lch) and the contact length
(LC) are both variable. Figure 1a,b differ in the geometry
of the contact. In Figure 1a, there is metal both above
and below the nanotube, as a model for a CNT com-
pletely embedded in metal. In Figure 1b, we consider
a contact where the metal only sits on top of the
CNT. The type of metal is defined by the difference
between its work function and that of the CNT, Δj =
jCNT � jmetal. The value of Δj then determines the
potential in the contacts, assuming the reference is at
the CNTmidgap. In all cases, we assume a temperature
of 300 K.
To determine the transport properties of the FET, we

use a self-consistent nonequilibrium Green's function
(NEGF) approach.18 The first step is a self-consistent
calculation of the charge and potential within the FET
for a given gate voltage (VG). The potential is obtained
from the charge through a 3D solution of Poisson's
equation,3 3 (ε3V) =�F, where F is the charge density,
V is the electrostatic potential, and ε is the spatially
dependent dielectric constant. To calculate the charge
due to a given potential, we use a tight-binding model
for the CNT, and use the NEGF approach to determine
the electron correlation function. The coupling be-
tween the CNT and the metal contacts is described
by the parameter Δ, which is a measure of the CNT�
metal hybridization.10,11 In this representation,Δ = 0 in
the channel andΔ> 0 in the contacts. Due to lessmetal
coverage of the CNT, we expect that the average value
of Δ will be smaller for the top contact than for the
embedded contact. For the contact lengths that we
consider, this would result in an increased contact
resistance for the top contact, which would reduce
the on current of the FET. However, this will have no
effect on the gate modulation of the top contact or the
improved subthreshold performance. Therefore, we
have chosen Δ to be the same for both contacts in
order to treat them on equal footing and isolate the
effect of their differing geometries. Once the charge
and the potential have been determined self-consistently,

the ballistic zero-bias conductance, G, can be calcu-
lated using the NEGF formalism. Finally, the small-bias
current through the device is given by ID = G 3 VDS,
where VDS is the source-drain bias.

RESULTS AND DISCUSSION

A central result of the experimental work of ref 15 is a
strong dependence of contact resistance on contact
length. Thus, before simulating the CNT transistor
characteristics, we parametrized our contact model
by fitting to the contact resistance data of ref 15. To
calculate the contact resistance, we assumed perfectly
flat bands along the CNT. In this case, the channel
resistance vanishes and the contact resistance is given
by 2RC = 1/G, where G is the zero-bias conductance. By
adjusting two independent parameters, Δ and Δφ, we
obtain an excellent match to the experimental data.
This is shown in Figure 2, where we plot the contact
resistance as a function of the contact length. The
symbols represent the experimental results and the
solid line shows our fit to the experimental data,
assuming Δ = 2.5 meV and Δφ = �0.7 eV. The work
function difference is reasonable for a CNT�Pd con-
tact,12,19 assuming jCNT = 4.5 eV and jPd = 5.2 eV.
Furthermore, the self-consistent band alignment puts
the Pd Fermi level 24meV below the CNT valence band
edge for the embedded contact, which indicates that
the contact is ohmic in the on-state. For the top
contact, the Fermi level varies from 19 to 59meV below
the valence band edge in the on-state, for VG = 0
to �0.8 V.
Using these values of Δ and Δφ, we then calculated

the transfer characteristics of the CNT FETs for channel
and contact lengths that match the experimental
devices. The results are shown in Figure 3, where the
experimental data are given by the symbols and the
theoretical data are given by the solid lines (the
experimental data have been shifted horizontally
to line up with the theoretical data; this discrepancy
could be due to trapped charges in the oxide, interface
charge between the gate and the oxide, or other

Figure 2. Contact resistance as a function of contact length.
The symbols represent the experimental values extracted
from ref 15. The solid line is the fit assuming a CNT�metal
coupling strength of Δ = 2.5 meV and a work function
difference of Δφ = �0.7 eV.

Figure 1. Schematic of a carbon nanotube field-effect tran-
sistor. In panel a the source and drain metals are above and
below the nanotube (embedded contact), while in panel b
the metal only sits on top of the nanotube (top contact).
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effects). The top row of Figure 3 shows the results for
Lch = 40 nm, the middle row is for Lch = 20 nm, and the
bottom row is for Lch = 15 nm. The left column shows
the simulation results for embedded contacts (see
Figure 1a), while the right column is for top contacts
(see Figure 1b). The experimental data are the same for
both columns.
An important feature of the experimental data is the

extremely good scaling of the transistor characteristics
as the channel length is reduced. Indeed, comparing
the experimental data for the channel lengths of 40, 20,
and 15 nm in Figure 3, one can see that the subthres-
hold swing is essentially unchanged as the channel
length is scaled down. While the thin HfO2 dielectric
provides good control over the FET channel, our
simulations indicate that this by itself is not sufficient
to explain the good subthreshold behavior. This can
be seen by comparing the left and right columns of
Figure 3. The left column shows the simulation results
for the embedded contacts. In this case, the theoretical
subthreshold swing ismuch larger than the experimental

value for small channel lengths, andwe see a poor fit to
the experimental results. However, when we remove
the metal below the CNT, the subthreshold swing is
significantly reduced for the short-channel devices and
we obtain excellent agreement with the experimental
data, as shown in the right column of Figure 3. These
results are summarized in Figure 3g, where we plot the
subthreshold swing as a function of channel length
for the experimental devices (black circles), for em-
bedded contacts (red squares), and for top contacts
(blue triangles). Here, one can see that the experimen-
tal subthreshold swing is well matched by the top
contact geometry and short-channel effects are strongly
mitigated in contrast to the embedded contacts. Thus,
the geometry of the contact plays a crucial role in
determining device performance and scaling, and the
improved behavior upon removing the bottom metal
suggests an influence of the gate on the contact
properties.
To understand this effect, in Figure 4 we plot the

energy band profile of the CNT for Lch = 15 nm. The
dashed line indicates the Fermi level, and the solid lines
indicate the conduction and valence band edges.
Figure 4 panels a and b show the band edges for
VG =�0.8 V, for embedded and top contacts, respectively.
At this gate voltage, the contacts are ohmic and the FET
is in the on-state, and the presence of the bottommetal
has little effect on the on-state performance. However,
the situation in the off-state is quite different, as shown
in Figure 4c,d. There, the embedded contact is still
ohmic, and in the channel the gate has pulled the
valence band edge below the Fermi level, slightly
turning off the transistor. Without the bottom metal
(Figure 4d), thegatehaspulleddown thebands in the con-
tacts by ∼84 meV, giving a Schottky barrier of ∼60 meV.

Figure 4. Panels a�d show the band-edge profile of the
CNT FET for Lch = 15 nm. The left (right) column is for an
embedded (top) contact. The top (bottom) row shows the
case for VG = �0.8 V (1 V). Panel e shows the differential
charge with respect to the Fermi energy at the location of
the arrow in panel c.

Figure 3. Panels a�f show the current vs gate voltage for a
variety of CNT FETs. The top, middle, and bottom rows are
for Lch = 40, 20, and 15 nm, respectively. The left (right)
column is the case for embedded (top) contacts. The
symbols represent experimental results from ref 15, and
the solid lines represent the results from numerical simula-
tions. Panel g shows the subthreshold swing as a function of
channel length. The black circles are for the experimental
devices, the red squares are for embedded contacts, and the
blue triangles are for top contacts.
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The introduction of this gate-dependent Schottky barrier
leads to a faster turning off of the FET compared to the
embedded contact geometry. However, while this
84 meV variation is large and significantly improves the
subthreshold swing, it only partially explains the impact
of the gate. Indeed, one can also see in Figure 4 that the
hole barrier created by the gate is much larger for
the case of the top contact (281 meV) compared to the
embedded contact (113 meV). Thus, the gate is more
effective at modulating the channel potential in the case
of the top contact. It might appear that the extra screen-
ing due to the bottommetal explains this phenomenon,
but we have verified that this is not the case.
Instead, the effect is a direct consequence of the

gatemodulation of the contact and can be understood
as follows: to establish a particular potential in the
middle of the channel, the gate has to create an
appropriate band-bending in a region between the
contact and the middle of the channel. The effective-
ness of the gate inmodulating the charge in this region
depends on how strongly the charge on the CNT varies
with the potential there. To illustrate this, in Figure 4e
we plot the differential charge on the CNT, dFCNT/dEF,
as a function of the Fermi energy, calculated at a
position indicated by the arrow in Figure 4c. When
the Fermi energy is near the valence band edge, as for
ohmic contacts, the differential charge is large and the
gate has little control over the near-contact region
because the bands are effectively pinned by the large
density of states. However, when the contacts are
Schottky the differential charge at the Fermi level is
small and the gate has much more control over the
bands in the near-contact region, which results in a
larger barrier in the middle of the channel.
In our simulations, we used a geometry with top and

bottom planar metals to illustrate the impact of the
gate on the contacts. However, experimentally it is
expected that the metal will surround the CNT, except
at the bottom where the CNT sits on the oxide. It may
appear surprising then that the gate fields are able to
penetrate the tiny cavitywhere the CNT sits. To address
this point, in Figure 5 we consider the electrostatics of
the cavity from an end-on view. In this figure, the cavity
is a rectangular hole of width WC in the contact metal
(dashed white lines), which sits on top of the 10-nm
oxide, and we calculate the electrostatic potential by
solving Laplace's equation for VG = 1 V. In the limit
WCf¥, and for a dielectric extending to the top contact,
the electrostatic potential drops linearly from the gate
to the contact. In this case, the potential at the center of
the CNT is roughly [(RCNT þ 0.3 nm)/tox] 3 VG, which is
about 10% of VG. Thus, a 1 V change of the gate voltage
can shift the band alignment at the nanotube/metal
contact by 100meV despite the proximity of the CNT to
the contactmetal. When the oxide is removed from the
CNT region, the potential is no longer linear due to the
dielectric/vacuum interface, and the potential on the

CNT increases to more than 40% of VG, illustrated by
the dashed line in the inset of Figure 5.
To assess whether decreasing the cavity size can

prevent field penetration, we calculated the potential
in the center of the cavity as a function ofWC. The solid
squares in the inset of Figure 5 show the case for HfO2

with a vacuum in the cavity, and the open circles show
the case when the cavity is also filledwith HfO2. We can
see that as WC decreases, so does the cavity potential.
This is understandable, since decreasing WC increases
the screening of the gate by the contact metal. Never-
theless, even as the cavity size decreases to 2 nm, the
potential in the middle of the vacuum cavity is still
30meV, sufficient to change the band alignment at the
contact from ohmic to Schottky. This strong penetra-
tion of the gate fields into the cavity is illustrated in the
color plot of Figure 5. Note that if the cavity is filledwith
the samematerial as the gate oxide (open circles in the
inset of Figure 5), the potential is much smaller. Thus, it
is the discontinuity of the dielectric constant at the

Figure 5. Electrostatics of the top contact geometry. The
dashed lines show the edge of the contact metal, and the
color scale indicates the electrostatic potential for the given
gate and contact voltages. The inset shows the potential at
themiddle of the cavity as a functionof the cavitywidth,WC.
The filled squares are for a vacuum in the cavity, and the
open circles are for an oxide-filled cavity.

Figure 6. Subthreshold swing as a function of oxide thick-
ness for three different CNT FETs. Blue triangles are for an
embedded contact with a channel length of 15 nm, and the
black squares (red circles) are for a top contact with a
channel length of 15 nm (40 nm).
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dielectric/vacuum interface that allows for the high
degree of gate control over the contact.
The results presented above demonstrate a signifi-

cant improvement of the subthreshold performance
whenwe consider the gatemodulation of the contacts.
Looking forward, this raises an interesting question
concerning the ultimate scaling limits of these devices;
how close can these devices come to the room-tem-
perature limit for subthreshold swing? To examine this
question, in Figure 6we plot the subthreshold swing as
a function of oxide thickness for three different cases:
an embedded contact with a channel length of 15 nm
(blue triangles) and a top contact with channel lengths
of 15 nm (black squares) and 40 nm (red circles). For the
top contact with a 40-nm channel length, the sub-
threshold swing is 62 mV/dec for an oxide thickness of
1 nm, which approaches the room-temperature limit
of 60 mV/dec.20 More interestingly, we also see that
the subthreshold swing for the top contact changes
relatively little as the oxide thickness decreases. This
highlights the strong impact that gate modulation of
the contacts has on device performance. It also suggests
that when the gate modulation effect is present, scaling
the oxide thickness below a critical value is not necessary
for the realization of high-performance CNT FETs.

CONCLUSIONS

We presented simulations of short-channel ballistic
CNT FETs that explain recent experimental results
using Pd contacts, andwe have reached two important
conclusions about the contacts. The first conclusion is
that the contacts are strongly modulated by the gate
when no bottom metal contact is present, allowing
for lower subthreshold swings for short channels and
improved scaling behavior. The second conclusion is
that field penetration in the small contact cavity is
enhanced by the field discontinuity at the dielectric/
cavity interface, enhancing the impact of the gate on
the contacts. Taken together, our results introduce
important design considerations for CNT electronic
devices, including more complicated geometries such
as CNT FETs with self-aligned gates. In this geometry,
the gate electrode does not extend under the source
and drain contacts, but fringe fields from the gate
could still modulate the contact properties. A more
detailed study is necessary to understand the magni-
tude of the gate-modulation effect in these devices,
and could pave the way for high-performance, low-
capacitance devices. More generally, our results should
also apply to devices made of other nanomaterials
such as nanowires and graphene.

METHODS
The potential is obtained from the charge through a 3D

solution of Poisson's equation, 3 3 (ε3V) = �F, where F is the
charge density (described below), V is the electrostatic poten-
tial, and ε is the spatially dependent dielectric constant. We treat
the metals in the device as perfect electric conductors by
imposing Dirichlet boundary conditions at the edges of the
source, drain, and gate electrodes, and we assume Neumann
boundary conditions at the left, right, and top edges of the
simulation space. Periodic boundary conditions are applied
along the z-axis (out of the page), and we use a Fourier trans-
form method to accelerate the solution of the 3D Poisson
equation. The size of the supercell along this axis is chosen to
avoid electrostatic interaction between neighboring CNTs.
Poisson's equation is discretized using the finite element method
and is solved with a conjugate gradient algorithm, yielding a 3D
potential profile, V(x,y,z). The potential along the length of the CNT
is then given by VCNT(x) =

1/2[V(x,ytop,ztop)þ V(x,ybot,zbot)], where
(ytop,ztop) are the coordinates on the top of the CNT in Figure 1a,
and (ybot,zbot) are the coordinates on the bottom of the CNT. We
have found this gives the same results as taking an average
potential over the entire circumference of the CNT. For the
electrostatic potential calculations the length of the contact
region is 10 nm, which ensures that the CNT is in local equilib-
rium with the metal.
To calculate the charge due to a given potential, we describe

the electronic structure of the CNT with a mode-space tight-
binding representation,21,22 assuming a nearest-neighbor cou-
pling of γ = 2.5 eV.23,24 The tight-binding Hamiltonian is given
by Hll = eVCNT (xl) � iΔ/2, H2l,2l�1 = H2l�1,2l = 2γ cos(πJ/M), and
H2l,2lþ1 = H2lþ1,2l = γ, where e is the electron charge, xl is the
position of the lth carbon ring, J is the subband index, M is the
number of atoms per carbon ring, and Δ is the CNT�metal
coupling strength. The charge density along the CNT is calcu-
lated as FCNT (xl) = e/2π 3

R
ImGll

<(E) dE, where G< is the electron
correlation function, determined by applying the tight-binding

Hamiltonian to the NEGF formalism.18,21,22 This 1D charge
density is then mapped back to 3D with a Gaussian distribution
of the charge around the CNT radius and by interpolating FCNT
onto the grid used to solve Poisson's equation. The width of the
Gaussian distribution is 0.06 nm.
The ballistic zero-bias conductance is calculated as G = 4e2/

h 3
R
T(E)[�df(E)/dE] dE, where h is Planck's constant, f(E) the

Fermi function, and T(E) is the transmission through the device,
determined using the NEGF formalism and the tight-binding
Hamiltonian including the self-consistent potential. To simulate
contacts of different lengths, we extend the Hamiltonian off the
edges of the simulation space so that the total contact length is
LC, andwe assume a flat potential and a finite value ofΔ in these
regions. In the NEGF formalism, these extensions serve as the
self-energies due to the leads.
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